Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Article En | MEDLINE | ID: mdl-38625771

Scalp high-frequency oscillations (sHFOs) are a promising non-invasive biomarker of epilepsy. However, the visual marking of sHFOs is a time-consuming and subjective process, existing automatic detectors based on single-dimensional analysis have difficulty with accurately eliminating artifacts and thus do not provide sufficient reliability to meet clinical needs. Therefore, we propose a high-performance sHFOs detector based on a deep learning algorithm. An initial detection module was designed to extract candidate high-frequency oscillations. Then, one-dimensional (1D) and two-dimensional (2D) deep learning models were designed, respectively. Finally, the weighted voting method is used to combine the outputs of the two model. In experiments, the precision, recall, specificity and F1-score were 83.44%, 83.60%, 96.61% and 83.42%, respectively, on average and the kappa coefficient was 80.02%. In addition, the proposed detector showed a stable performance on multi-centre datasets. Our sHFOs detector demonstrated high robustness and generalisation ability, which indicates its potential applicability as a clinical assistance tool. The proposed sHFOs detector achieves an accurate and robust method via deep learning algorithm.


Deep Learning , Epilepsy , Humans , Electroencephalography/methods , Scalp , Reproducibility of Results , Epilepsy/diagnosis
2.
Seizure ; 117: 44-49, 2024 Apr.
Article En | MEDLINE | ID: mdl-38308908

OBJECTIVE: Perampanel (PER) is a new anti-seizure medication (ASM) with a novel mechanism of action. This study aimed to determine the efficacy and safety of PER when added to monotherapy in children and adolescents (age, 4-18 years) with epilepsy. METHOD: A multicenter prospective observational study was performed on children and adolescents (age, 4-18 years) with epilepsy who did not respond to ASM monotherapy between July 2021 and October 2022. PER was used as the first add-on therapy for the enrolled patients. Seizure-free rate, response rate, inefficacy rate, and drug retention rate were the main observation indicators during the 6 months of treatment. The patients were grouped based on treatment efficacy, and factors affecting efficacy were statistically analyzed. Adverse reactions were also recorded. RESULTS: In this study, 93 patients with epilepsy were enrolled; among them, 9 patients were lost to follow-up (attrition rate, 9.7 %), and 84 were included in the analysis. Five patients with unknown efficacy discontinued taking PER early due to intolerable adverse reactions, and 79 patients (48 males, 31 females; mean age, 11.0 ± 3.9 years) finally remained. Genetic epilepsy and structural epilepsy were found in 22 patients and 36 patients, respectively. The mean duration of epilepsy history at the time of PER initiation was 4.0 ± 3.8 years, and the mean maintenance dosage of add-on PER was 4.5 ± 1.8 mg/day (equivalent to 0.14 ± 0.07 mg/kg/day). Among the 79 patients, 28 patients were diagnosed with epilepsy syndrome, including 13 patients having self-limited epilepsy with centrotemporal spikes, among whom 9 patients were seizure-free after adding PER during the 6-month follow-up (seizure-free rate, 69.2 %). For these 79 patients, the seizure-free, response, and retention rates at the end of follow-up were 45.6 %, 74.7 %, and 82.1 %, respectively. Among the 84 patients included in the analyses, adverse reactions occurred in 20 patients, mainly dizziness (8 patients), somnolence (6 patients), and irritability (4 patients), and 4 patients developed two adverse reactions simultaneously. Univariate analyses revealed statistically significant differences in efficacy between groups with structural and non-structural epilepsy and between groups with different baseline concomitant ASMs, suggesting that these factors affected the efficacy of PER as the first add-on therapy. CONCLUSION: The overall response rate of PER as the first add-on therapy for children and adolescents with epilepsy who were followed up for 6 months was 74.7 %, indicating a relatively favorable safety and tolerability profile. The group of the baseline concomitant ASM administered and the etiological classification of epilepsy as either structural or non-structural were the factors influencing the efficacy of PER as the first add-on therapy.


Anticonvulsants , Drug Therapy, Combination , Epilepsy , Nitriles , Pyridones , Humans , Child , Male , Female , Anticonvulsants/administration & dosage , Anticonvulsants/adverse effects , Pyridones/adverse effects , Pyridones/administration & dosage , Pyridones/therapeutic use , Adolescent , Child, Preschool , Prospective Studies , Epilepsy/drug therapy , Treatment Outcome
3.
Heliyon ; 10(4): e26609, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38404806

Objectives: To investigate the characteristics of brain structure in children with focal cortical dysplasia (FCD)-induced pharmacoresistant epilepsy, and explore the potential mechanisms of cognitive impairment from the view of gray matter alteration. Methods: 25 pharmacoresistant pediatric patients with pathologically confirmed focal cortical dysplasia (FCD), and 25 gender-matched healthy controls were included in this study. 3.0T MRI data and intelligence tests using the Wechsler Intelligence Scale for Children-Forth Edition (WISC-IV) were generated for all subjects. Voxel-based morphometry (VBM)-diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL) and surface-based morphometry (SBM) analyses were performed to analyze gray matter volume and cortical structure. Two-sample t-tests were used to compare the differences in gray matter volume (P<0.05, FWE) and cortical thickness (P<0.001, FWE) between the two groups. Also, the Spearman rank correlation analyses were employed to determine the relationship between structural alterations and neuropsychological results. Results: The WISC-IV scores of the FCD group were significantly lower than those of the HC group in terms of full-scale intelligence quotient (FSIQ), verbal comprehension index (VCI), perceptual reasoning index (PRI), working memory index (WMI), and processing speed index (PSI) (all P<0.01). Compared with the HC group, in the FCD group, the gray matter volume (GMV) reduced significantly in the left cerebellum_8, cerebellum_Crus2, and bilateral thalamus (P<0.05, FWE); the GMV increased in the bilateral medial frontal gyrus, right precuneus, and left inferior temporal gyrus (P<0.05, FWE), and the cortical thickness increased in the bilateral frontal, parietal, and temporal areas (P<0.001, FWE). Correlation analyses showed that the age of seizure onset had positive correlations with the WISC-IV scores significantly. Meanwhile, the cortex thicknesses of the left pars opercularis gyrus, left middle temporal gyrus, and right inferior temporal gyrus had negative correlations with the WISC-IV scores significantly. Conclusion: FCD patients showed subtle structural abnormalities in multiple brain regions, with significant involvement of the primary visual cortex and language function cortex. And we also demonstrated a crucial correlation between gray matter structural alteration and cognitive impairment.

5.
Front Pediatr ; 11: 1086970, 2023.
Article En | MEDLINE | ID: mdl-37705601

Background: The GNAO1 gene encodes the α-subunit (Gαo) of the heterotrimeric guanine nucleotide-binding protein (G protein). The aim of this study was to explore the clinical characteristics of patients with GNAO1 pathogenic variations. Methods: Ten patients with pathogenic variations in GNAO1 were enrolled from the Shenzhen Children's Hospital. Clinical data from several cases previously reported from China were also included and analyzed. Results: Twenty-seven patients with variations in GNAO1 were analyzed (10 patients from Shenzhen Children's Hospital, 17 patients from previously published studies) including 12 boys and 15 girls. The median age of onset was 3 months with moderate to severe global developmental delay. Nineteen different GNAO1 heterozygous variants were identified. Epilepsy was observed in 18 patients (67%, 18/27), movement disorder (MD) was observed in 22 patients (81%, 22/27), and both were seen in 13 patients (48%, 13/27). Seizures typically presented as focal seizures in all patients with epilepsy. MD typically presented as dystonia and chorea. Loss-of-function (LOF) or partial loss-of-function (PLOF) mutations were more frequent in patients with developmental and epileptic encephalopathy (p = 0.029). Interictal electroencephalograms showed multifocal or diffuse epileptiform discharges. The most common magnetic resonance imaging finding was widened extracerebral space. In contrast to MD, in which improvements were not common, seizures were easily controlled by anti-seizure medications. Severe dystonia in three patients was effectively treated by deep brain stimulation. Seven (26%, 7/27) patients died of respiratory complications, status dystonicus, choreoathetosis, or sudden unexpected death in epilepsy. Conclusion: We analyzed clinical data of 27 cases of GNAO1-related encephalopathy in China. MD seemed to be the central feature and was most difficult to control. LOF or PLOF variants were significantly associated with developmental and epileptic encephalopathy. The active intervention of severe dystonia may prevent death due to status dystonicus. However, future studies with larger samples are needed to confirm these results.

6.
Front Neurol ; 14: 1077702, 2023.
Article En | MEDLINE | ID: mdl-37139062

Objective: To test the feasibility and reliability of intracranial electrophysiological recordings in an acute status epilepticus model on laboratory swine. Method: Intrahippocampal injection of kainic acid (KA) was performed on 17 male Bama pigs (Sus scrofa domestica) weighing between 25 and 35 kg. Two stereoelectroencephalography (SEEG) electrodes with a total of 16 channels were implanted bilaterally along the sensorimotor cortex to the hippocampus. Brain electrical activity was recorded 2 h daily for 9-28 days. Three KA dosages were tested to evaluate the quantities capable of evoking status epilepticus. Local field potentials (LFPs) were recorded and compared before and after the KA injection. We quantified the epileptic patterns, including the interictal spikes, seizures, and high-frequency oscillations (HFOs), up to 4 weeks after the KA injection. Test-retest reliability using intraclass correlation coefficients (ICCs) were performed on interictal HFO rates to evaluate the recording stability of this model. Results: The KA dosage test suggested that a 10 µl (1.0 µg/µl) intrahippocampal injection could successfully evoke status epilepticus lasting from 4 to 12 h. At this dosage, eight pigs (50% of total) had prolonged epileptic events (tonic-chronic seizures + interictal spikes n = 5, interictal spikes alone n = 3) in the later 4 weeks of the video-SEEG recording period. Four pigs (25% of total) had no epileptic activities, and another four (25%) had lost the cap or did not complete the experiments. Animals that showed epileptiform events were grouped as E + (n = 8) and the four animals showing no signs of epileptic events were grouped as E- (n = 4). A total of 46 electrophysiological seizures were captured in the 4-week post-KA period from 4 E + animals, with the earliest onset on day 9. The seizure durations ranged from 12 to 45 s. A significant increase of hippocampal HFOs rate (num/min) was observed in the E+ group during the post-KA period (weeks 1, 2,4, p < 0.05) compared to the baseline. But the E-showed no change or a decrease (in week 2, p = 0.43) compared to their baseline rate. The between-group comparison showed much higher HFO rates in E + vs. E - (F = 35, p < 0.01). The high ICC value [ICC (1, k) = 0.81, p < 0.05] quantified from the HFO rate suggested that this model had a stable measurement of HFOs during the four-week post-KA periods. Significance: This study measured intracranial electrophysiological activity in a swine model of KA-induced mesial temporal lobe epilepsy (mTLE). Using the clinical SEEG electrode, we distinguished abnormal EEG patterns in the swine brain. The high test-retest reliability of HFO rates in the post-KA period suggests the utility of this model for studying mechanisms of epileptogenesis. The use of swine may provide satisfactory translational value for clinical epilepsy research.

7.
Front Pediatr ; 10: 888001, 2022.
Article En | MEDLINE | ID: mdl-36081626

Background: PhelanrMcDermid syndrome (PMS) is an uncommon autosomal dominant inherited developmental disorder. The main characteristics are hypotonia, intellectual disability, autism spectrum disorder, autism-like behaviors and tiny facial deformities. Most cases are caused by the deletion of the 22q13 genomic region, including the deletion of SHANK3. Methods: Genetic and phenotype evaluations of ten Chinese pediatric patients were performed. The clinical phenotypes and genetic testing results were collected statistically. We analyzed the deletion of the 22q13 genomic region and small mutations in SHANK3 (GRCh37/hg19) and performed parental genotype verification to determine whether it was related to the parents or was a novel mutation. Results: The age of the patients diagnosed with PMS ranged from 0 to 12 years old. Nine of the pediatric patients experienced Intellectual Disability, language motion development delay and hypotonia as prominent clinical features. One subject had autism, two subjects had abnormal electroencephalogram discharge and one subject was aborted after fetal diagnosis. Three patients had a SHANK3 mutation or deletion. All but the aborted fetuses had intellectual disability. Among the ten patients, a deletion in the 22q13 region occurred in seven patients, with the smallest being 60.6 kb and the largest being >5.5 Mb. Three patients had heterozygous mutations in the SHANK3 gene. Conclusion: All ten patients had novel mutations, and three of these were missense or frameshift mutations. For the first time reported, it is predicted that the amino acid termination code may appear before protein synthesis. The novel mutations we discovered provide a reference for clinical research and the diagnosis of PMS.

8.
Seizure ; 101: 205-210, 2022 Oct.
Article En | MEDLINE | ID: mdl-36084526

OBJECTIVE: It has been suggested that asymmetric hypsarrhythmia is associated with structural etiology. We devised the Hypsarrhythmic Asymmetric Scoring Scheme (HASS) to quantify the degree of hypsarrhythmic asymmetry in a retrospective series of patients who underwent surgical treatment at our center. The present study aimed to investigate the role of HASS in predicting the postsurgical seizure outcomes. METHODS: We retrospectively analyzed the records of 46 children with hypsarrhythmia who underwent resective epilepsy surgery between 2018 and 2020 and were followed up for at least 1 year after surgery. Hypsarrhythmia severity in each hemisphere was quantified and scored. The HASS score was calculated as the difference between the two hemispheres. Univariate results were submitted to logistic regression models to identify independent predictors for favorable surgical outcomes. RESULTS: Of the 46 patients who underwent resective surgery, Engel's class I-Ⅱ outcomes were achieved in 34 (73.9%). The Engel I-Ⅱ group had a significantly higher HASS score than the Engel Ⅲ-Ⅳ group (p<0.001). Multivariate analysis showed that the HASS score was the only significant predictor of good outcomes (p = 0.011). Further receiver operating characteristic analysis showed that a threshold of 7 yielded a better seizure outcome with a sensitivity of 97.06% and specificity of 83.33%. SIGNIFICANCE: As the first hypsarrhythmia scoring system specially designed for presurgical evaluation, the HASS score may contribute to predicting the postsurgical seizure outcome from the electroencephalography perspective.


Epilepsy , Spasms, Infantile , Child , Electroencephalography/adverse effects , Epilepsy/diagnosis , Epilepsy/etiology , Epilepsy/surgery , Humans , Retrospective Studies , Seizures/complications , Seizures/diagnosis , Seizures/surgery , Spasms, Infantile/complications , Spasms, Infantile/diagnosis , Spasms, Infantile/surgery , Treatment Outcome
9.
Seizure ; 101: 218-224, 2022 Oct.
Article En | MEDLINE | ID: mdl-36087422

Purpose The voltage-gated potassium channel Kv3.2, encoded by KCNC2, facilitates fast-spiking GABAergic interneurons to fire action potentials at high frequencies. It is pivotal to maintaining excitation/inhibition balance in mammalian brains. This study identified two novel de novo KCNC2 variants, p.Pro470Ser (P470S) and p.Phe382Leu (F382L), in patients with early onset developmental and epileptic encephalopathy (DEE). Methods To examine the molecular basis of DEE, we studied the functional characteristics of variant channels using patch-clamp techniques and computational modeling. Results Whole-cell patch clamp recordings from infected HEK293 cells revealed that channel activation and deactivation kinetics strongly decreased in both Kv3.2 P470S and F382L variant channels. This decrease also occurred in Kv3.2 p.Val471Leu (V471L) channels, known to be associated with DEE. In addition, Kv3.2 F382L and V471L variants exhibited a significant increase in channel conductance and a ∼20 mV negative shift in the threshold for voltage-dependent activation. Simulations of model GABAergic interneurons revealed that all variants decreased neuronal firing frequency. Thus, the variants' net loss-of-function effects disinhibited neural networks. Conclusion Our findings provide compelling evidence supporting the role of KCNC2 as a disease-causing gene in human neurodevelopmental delay and epilepsy.


Brain Diseases , Potassium Channels, Voltage-Gated , Action Potentials/genetics , Animals , HEK293 Cells , Humans , Mammals , Patch-Clamp Techniques , Potassium Channels, Voltage-Gated/pharmacology , Shaw Potassium Channels/genetics
10.
Hum Mutat ; 43(12): 1956-1969, 2022 12.
Article En | MEDLINE | ID: mdl-36030538

Tuberous sclerosis complex (TSC) is a multi-system genetic disorder. Most patients have germline mutations in TSC1 or TSC2 but, 10%-15% patients do not have TSC1/TSC2 mutations detected on routine clinical genetic testing. We investigated the contribution of low-level mosaic TSC1/TSC2 mutations in unsolved sporadic patients and families with TSC. Thirty-one sporadic TSC patients negative on routine testing and eight families with suspected parental mosaicism were sequenced using deep panel sequencing followed by droplet digital polymerase chain reaction. Pathogenic variants were found in 22/31 (71%) unsolved sporadic patients, 16 were mosaic (median variant allele fraction [VAF] 6.8% in blood) and 6 had missed germline mutations. Parental mosaicism was detected in 5/8 families (median VAF 1% in blood). Clinical testing laboratories typically only report pathogenic variants with allele fractions above 10%. Our findings highlight the critical need to change laboratory practice by implementing higher sensitivity assays to improve diagnostic yield, inform patient management and guide reproductive counseling.


Tuberous Sclerosis , Humans , Tuberous Sclerosis/diagnosis , Tuberous Sclerosis/genetics , Tuberous Sclerosis/pathology , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/genetics , Tumor Suppressor Proteins/genetics , Mosaicism , Mutation
11.
Front Pediatr ; 10: 759889, 2022.
Article En | MEDLINE | ID: mdl-35386260

In the recent 3 years, subjects with Pumilio1-associated developmental disability, ataxia, and seizure syndrome have been identified as harboring Pumilio homolog 1 (PUM1) mutations. However, the characteristics of the seizure phenotype remain to be elucidated. We herein described a 3-year-old female proband who was diagnosed with developmental and epileptic encephalopathy presenting with some features suggestive of a Dravet-like syndrome. For genetic analyses, trio-based whole-exome sequencing and array comparative genomic hybridization were performed. Consequently, a de novo heterozygous missense variant was identified in exon 22 of the PUM1 gene: NM_001020658: c.3439C > T (p.Arg1147Trp). Upon thoroughly reviewing the existing literature, nine cases of PUM1 mutation-related epilepsy were identified, and their clinical features were summarized. A relationship between PUM1 mutation and clinical manifestations characteristic of a Dravet-like syndrome was proposed. To our knowledge, this is the first report of a patient with PUM1 mutation presenting with a Dravet-like syndrome.

13.
Seizure ; 94: 183-188, 2022 Jan.
Article En | MEDLINE | ID: mdl-34802897

PURPOSE: To evaluate the retention rate, efficacy, and safety of ketogenic diet therapy for drug-resistant epilepsy in children and compare the results with those of a previous cohort at our institution. METHODS: A total of 634 children with drug-resistant epilepsy were included in this retrospective study. Patients were categorized into two groups. The previous cohort was included as a control group and included 317 children assessed between 2004 and 2011, whereas the current group included 317 children assessed between 2015 and 2019. The control group was provided care as usual, and the current group additionally adopted the goal and long-term management strategy. Outcomes were measured with respect to retention rate, seizure reduction, and adverse reaction. RESULTS: Patient demographics were consistent between both cohorts. Compared to the past ten years, the retention rate significantly increased over time (3 months: 62.8% vs. 82.0%, p <0.001; 6 months: 42.0% vs. 60.6%, p <0.001; 12 months: 24.3% vs. 34.1%, p = 0.007), and the response rate was significantly improved (3 months: 35.0% vs. 55.5%, p <0.001; 6 months: 26.2% vs. 43.2%, p <0.001; 12 months: 18.6% vs. 31.5%, p <0.001). Constipation (n = 79, 24.9%) was the most common side effect in the current cohort. Food refusal and hypoproteinaemia reduced to 3.5% and 0.9%, respectively. CONCLUSION: Goal and long-term management is effective for ketogenic diet therapy, which significantly improved the ketogenic diet retention rate, efficacy, and incidence of adverse reactions. This strategy has promising applicability in ketogenic diet therapy. CLINICAL REGISTRATION: ChiCTR-IIR-16,008,342.


Diet, Ketogenic , Drug Resistant Epilepsy , Pharmaceutical Preparations , Child , Humans , Retrospective Studies , Seizures , Treatment Outcome
14.
Front Neurosci ; 15: 761473, 2021.
Article En | MEDLINE | ID: mdl-34924933

Objective: We aimed to explore the associated clinical phenotype and the natural history of patients with SYNGAP1 gene variations during early childhood and to identify their genotype-phenotype correlations. Methods: This study used a cohort of 13 patients with epilepsy and developmental disorder due to SYNGAP1 mutations, namely, 7 patients from Shenzhen Children's Hospital between September 2014 and January 2020 and 6 patients from previously published studies. Their clinical data were studied. Results: A total of 13 children with SYNGAP1 gene variants (eight boys and five girls) were identified. The age of disease onset was in infancy. Mutations were located between exons 8 and 15; most were frameshift or truncated mutations. Four mutation sites (c.924G > A, c.1532-2_1532del, c.1747_1755dup, and c.1735_1738del) had not been reported before. All patients had global developmental delay within the first year of life, and intellectual impairment became gradually apparent. Some of them developed behavioral problems. The developmental delay occurred before the onset of seizures. All seven patients in our cohort presented with epilepsy; myoclonic seizures, absence seizures, and epileptic spasms were the most common seizure types. Abnormal electroencephalograms were identified from five patients before the onset of their seizures. All patients suffered from drug-resistance seizures. However, comorbidities such as behavioral problems were less frequently observed. Conclusion: The most common age of disease onset in SYNGAP1 gene mutations is in infancy, while neurodevelopmental delay and epilepsy are the major phenotypes. They have a higher percentage of drug-resistant epilepsy and epileptic spasms than those in previous reports. We should give attention to the patients with abnormal EEGs without seizures and think about the suitable time of the anti-seizure medications for them. We have not found the genotype-phenotype correlation. Trial registration: Chinese Clinical Trial Registry, Registration number: ChiCTR2100049289 (https://www.chictr.org.cn/listbycreater.aspx).

15.
Epilepsia ; 62(6): 1401-1415, 2021 06.
Article En | MEDLINE | ID: mdl-33951195

OBJECTIVE: This study was undertaken to expand the phenotypic and genetic spectrum of CLCN4-related epilepsy and to investigate genotype-phenotype correlations. METHODS: We systematically reviewed the phenotypic and genetic spectrum of newly diagnosed and previously reported patients with CLCN4-related epilepsy. Three novel variants identified in four patients reported in this study were evaluated through in silico prediction and functional analysis by Western blot, immunofluorescence, and electrophysiological measurements. RESULTS: Epilepsy was diagnosed in 54.55% (24/44) of individuals with CLCN4-related disorders and was drug-resistant in most cases. Of 24 patients, 15 had epileptic encephalopathy and four died at an early age; 69.57% of patients had seizure onset within the first year of life. Myoclonic seizures are the most common seizure type, and 56.25% of patients presented multiple seizure types. Notably, seizure outcome was favorable in individuals with only one seizure type. All patients showed intellectual disability, which was severe in 65.22% of patients. Additional common features included language delay, behavioral disorders, and dysmorphic features. Five patients benefitted from treatment with lamotrigine. Most variants, which were mainly missense (79.17%), were inherited (70.83%). Whereas frameshift, intragenic deletion, or inherited variants were associated with milder phenotypes, missense or de novo variants led to more severe phenotypes. All evaluated CLCN4 variants resulted in loss of function with reduced ClC-4 currents. Nonetheless, genotype-phenotype relationships for CLCN4-related epilepsy are not straightforward, as phenotypic variability was observed in recurrent variants and within single families. SIGNIFICANCE: Pathogenic CLCN4 variants contribute significantly to the genetic etiology of epilepsy. The phenotypic spectrum of CLCN4-related epilepsy includes drug-resistant seizures, cognitive and language impairment, behavioral disorders, and congenital anomalies. Notably, the mutation type and the number of seizure types correlate with the severity of the phenotype, suggesting its use for clinical prognosis. Lamotrigine can be considered a therapeutic option.


Chloride Channels/genetics , Epilepsy/genetics , Epilepsy/psychology , Adolescent , Adult , Aged , Anticonvulsants/therapeutic use , Child , Child Behavior Disorders/etiology , Child, Preschool , Developmental Disabilities/etiology , Developmental Disabilities/genetics , Electroencephalography , Epilepsies, Myoclonic/epidemiology , Epilepsies, Myoclonic/genetics , Epilepsy/epidemiology , Female , Frameshift Mutation , Gene Deletion , Genetic Variation , Genotype , Humans , Lamotrigine/therapeutic use , Language Disorders/etiology , Magnetic Resonance Imaging , Male , Mutation, Missense , Phenotype , Seizures/physiopathology
16.
Stereotact Funct Neurosurg ; 98(2): 73-79, 2020.
Article En | MEDLINE | ID: mdl-32036377

INTRODUCTION: Stereoelectroencephalography (SEEG) refers to a commonly used diagnostic procedure to localise and define the epileptogenic zone of refractory focal epilepsies, by means of minimally invasive operation techniques without large craniotomies. OBJECTIVE: This study aimed to investigate the influence of different registration methods on the accuracy of SEEG electrode implantation under neuronavigation for paediatric patients with refractory epilepsy. METHODS: The clinical data of 18 paediatric patients with refractory epilepsy were retrospectively analysed. The SEEG electrodes were implanted under optical neuronavigation while the patients were in the prone position. Patients were divided into two groups on the basis of the surface-based registration of MR scan method and refined anatomy-based registration of CT scan. Registration time, accuracy, and the differences between electrode placement and preoperative planned position were analysed. RESULTS: Thirty-six electrodes in 7 patients were placed under surface-based registration of MR scan, and 45 electrodes in 11 patients were placed under refined anatomy-based registration of CT scan. The registration time of surface-based registration of MR scan and refined anatomy-based registration of CT scan was 45 ± 12 min and 10 ± 4 min. In addition, the mean registration error, the error of insertion point, and target error were 3.6 ± 0.7 mm, 2.7 ± 0.7 mm, and 3.1 ± 0.5 mm in the surface-based registration of MR scan group, and 1.1 ± 0.3 mm, 1.5 ± 0.5 mm, and 2.2 ± 0.6 mm in the refined anatomy-based registration of CT scan group. The differences between the two registration methods were statistically significant. CONCLUSIONS: The refined anatomy-based registration of CT scan method can improve the registration efficiency and electrode placement accuracy, and thereby can be considered as the preferred registration method in the application of SEEG electrode implantation under neuronavigation for treatment of paediatric intractable epilepsy.


Electrodes, Implanted/standards , Magnetic Resonance Imaging/standards , Neuronavigation/standards , Prone Position , Stereotaxic Techniques/standards , Tomography, X-Ray Computed/standards , Adolescent , Child , Child, Preschool , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Electroencephalography/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Neuronavigation/methods , Prone Position/physiology , Retrospective Studies , Tomography, X-Ray Computed/methods
17.
PLoS Negl Trop Dis ; 13(10): e0007740, 2019 10.
Article En | MEDLINE | ID: mdl-31603908

Schistosomiasis is a serious worldwide parasitic disease. One of the best ways to control schistosomiasis is to control the population of Oncomelania hupensis snails. We sought to identify a high-efficiency biogenic molluscicide against Oncomelania with low toxicity, to avoid chemical molluscicide contamination and toxicity in aquatic organisms. We extracted quaternary benzo[c]phenanthridine alkaloids (QBAs) from Macleaya cordata fruits. Molluscicidal activity of the QBAs against Oncomelania was determined using bioassay. Our results showed that the extracted QBAs had a strong molluscicidal effect. In treatment of O. hupensis with QBAs for 48 h and 72 h, the lethal concentration (LC50) was 2.89 mg/L and 1.29 mg/L, respectively. The molluscicidal activity of QBAs was close to that of niclosamide (ethanolamine salt), indicating that QBAs have potential development value as novel biogenic molluscicides. We also analyzed physiological toxicity mechanisms by examining the activity of several important detoxification enzymes. We measured the effect of the extracted QBAs on the activities of glutathione S-transferase (GST), carboxylesterase (CarE), acid phosphatase (ACP), and alkaline phosphatase (AKP) in the liver of O. hupensis. We found that the effects of QBAs on detoxification metabolism in O. hupensis were time and concentration dependent. The activities of GST, CarE, AKP, and ACP in the liver of snails increased significantly in the early stage of treatment (24 h), but decreased sharply in later stages (120 h), compared with these activities in controls. GST, CarE, AKP, and ACP activity in the liver of snails treated with LC50 QBAs for 120 h decreased by 62.3%, 78.1%, 59.2%, and 68.6%, respectively. Our results indicate that these enzymes were seriously inhibited by the extracted QBAs and the detoxification and metabolic functions of the liver gradually weakened, leading to poisoning, which could be the main cause of death in O. hupensis snails.


Alkaloids/toxicity , Fruit/chemistry , Gastropoda/drug effects , Molluscacides/toxicity , Papaveraceae/chemistry , Phenanthridines/toxicity , Plant Extracts/toxicity , Acid Phosphatase/drug effects , Acid Phosphatase/metabolism , Alkaline Phosphatase/drug effects , Alkaline Phosphatase/metabolism , Animals , Carboxylesterase/drug effects , Carboxylesterase/metabolism , China , Glutathione Transferase/drug effects , Glutathione Transferase/metabolism , Inactivation, Metabolic/drug effects , Liver/metabolism , Schistosomiasis/prevention & control , Schistosomiasis/transmission
18.
Seizure ; 71: 151-157, 2019 Oct.
Article En | MEDLINE | ID: mdl-31351306

PURPOSE: We investigated whether the presence of interictal scalp EEG high frequency oscillations (HFOs) in children with epileptic encephalopathy with continuous spike-and-wave during sleep (CSWS) can predict seizure and cognitive outcome after steroid therapy. METHODS: Twenty-two children with CSWS were prospectively enrolled and received methylprednisolone therapy. Interictal scalp HFOs, spike wave index (SWI) and intelligence quotient (IQ) were assessed before and after the treatment. The children were divided into two groups based on the early seizure reduction ratio at 2 weeks (≥50%, "response group"; otherwise "non-response group"). The "response group" was further divided into two subgroups ("relapse" and "non-relapse" subgroups) according to the late seizure outcome (after 3 months). RESULTS: Interictal HFOs and electrical status epilepticus in sleep (ESES) (defined as SWI ≥ 85%) were detected in all children at the baseline. In the response with relapse group (n = 11), the detection ratio of HFOs was significantly higher than that of ESES at 2 weeks (81.2 vs. 27.3%), 3 months (90.9 vs. 36.4%), and 6 months (100 vs. 54.5%) post-therapy. In the non-response group (n = 4), both HFOs and ESES persisted in all children. The average IQ improved significantly only in the response with non-relapse group. The persistence of HFOs negatively correlated with both the average IQ, yet the persistence of ESES did not. CONCLUSION: Interictal scalp HFOs may be a favorable non-invasive biomarker of predicting seizure and cognitive outcome in CSWS.


Brain Waves/physiology , Epileptic Syndromes/physiopathology , Glucocorticoids/pharmacology , Intelligence/physiology , Methylprednisolone/pharmacology , Outcome Assessment, Health Care , Sleep/physiology , Status Epilepticus/drug therapy , Status Epilepticus/physiopathology , Biomarkers , Child , Female , Glucocorticoids/administration & dosage , Humans , Male , Methylprednisolone/administration & dosage , Prospective Studies
19.
Commun Biol ; 1: 96, 2018.
Article En | MEDLINE | ID: mdl-30175250

Mutations in the SCN2A gene encoding a voltage-gated sodium channel Nav1.2 are associated with epilepsies, intellectual disability, and autism. SCN2A gain-of-function mutations cause early-onset severe epilepsies, while loss-of-function mutations cause autism with milder and/or later-onset epilepsies. Here we show that both heterozygous Scn2a-knockout and knock-in mice harboring a patient-derived nonsense mutation exhibit ethosuximide-sensitive absence-like seizures associated with spike-and-wave discharges at adult stages. Unexpectedly, identical seizures are reproduced and even more prominent in mice with heterozygous Scn2a deletion specifically in dorsal-telencephalic (e.g., neocortical and hippocampal) excitatory neurons, but are undetected in mice with selective Scn2a deletion in inhibitory neurons. In adult cerebral cortex of wild-type mice, most Nav1.2 is expressed in excitatory neurons with a steady increase and redistribution from proximal (i.e., axon initial segments) to distal axons. These results indicate a pivotal role of Nav1.2 haplodeficiency in excitatory neurons in epilepsies of patients with SCN2A loss-of-function mutations.

20.
Zhongguo Dang Dai Er Ke Za Zhi ; 20(2): 130-133, 2018 Feb.
Article Zh | MEDLINE | ID: mdl-29429462

OBJECTIVE: To investigate the association between SCN1A rs3812718 polymorphism and generalized epilepsy with febrile seizures plus (GEFS+), and to provide potential molecular targets for the diagnosis and treatment of GEFS+. METHODS: The iPLEX technique in the MassARRAY system was used to determine SCN1A rs3812718 polymorphism, genotype frequency, and allele frequency in 50 patients with GEFS+ and 50 healthy controls. RESULTS: As for the frequencies of CC, CT, and TT genotypes in SCN1A rs3812718, there was a significant difference in the frequency of TT genotype between the GEFS+ group and the control group (P<0.05). There was also a significant difference in the frequency of T allele between the two groups (P<0.05). Compared with those carrying CC genotype or C allele, the individuals with CT genotype , TT genotype or T allele had a higher risk of developing GEFS+ (CT/CC: OR=4.05, 95%CI: 1.04-15.69; TT/CC: OR=30.60, 95%CI: 6.46-144.85; T/C: OR=4.64, 95%CI: 2.54-8.48). CONCLUSIONS: SCN1A rs3812718 polymorphism is a risk factor for GEFS+, and the population carrying T allele may have an increased risk of GEFS.


Epilepsy, Generalized/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Polymorphism, Single Nucleotide , Seizures, Febrile/genetics , Adolescent , Child , Child, Preschool , Epilepsy, Generalized/etiology , Female , Genotype , Humans , Male , Seizures, Febrile/etiology
...